Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

نویسندگان

  • Yu T. Tsai
  • Jin H. Huang
چکیده

Abstract—In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Sound Transmission Loss of a Composite Rectangular Plate with Infinite Baffle

In this paper, optimization of the sound transmission loss of finite rectangular anisotropic laminated composite plate with simply supported boundary conditions has been developed to maximize transmission loss. Appropriate constraints were imposed to prevent the occurrence of softening effect due to optimization. For this purpose, optimization process was incorporated into comprehensive finite ...

متن کامل

An Introduction to a New Criterion Proposed for Stopping GA Optimization Process of a Laminated Composite Plate

Several traditional stopping criteria in Genetic Algorithms (GAs) are applied to the optimization process of a typical laminated composite plate. The results show that neither of the criteria of the type of statistical parameters, nor those of the kinds of theoretical models performs satisfactorily in determining the interruption point for the GA process. Here, considering the configuration of ...

متن کامل

Multi-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM

In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...

متن کامل

Analysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives

In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...

متن کامل

Numerical Modeling Of Obliquely Incident Guided Wave Scattering By A Crack In A Laminated Composite Plate

In this paper, we consider scattering by a guided wave incident obliquely on a surface breaking crack in a laminated composite plate, with a view to ultrasonic nondestructive assessment of cracks. The solution to this problem is the first step towards analyzing the general three-dimensional scattering problem. The method used for modeling is a hybrid method which combines finite element method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015